SpectralSummarized Class¶
Spectral features summarized over time using mean and variance. Returns a 22-dimension feature vector for each audio sample.
- Features:
- Spectral Centroid 
- Spectral Bandwidth 
- Spectral Contrast (7 frequency bands) 
- Spectral Flatness 
- Spectral Rolloff 
 
- 
class spiegelib.features.SpectralSummarized(frame_size=2048, hop_size=512, scale_axis=0, **kwargs)¶
- Bases: - spiegelib.features.features_base.FeaturesBase- Parameters
- frame_size (int, optional) – size of FFT, defaults to 2048 
- hop_size (int, optional) – size of hop shift in samples, defuault to 512 
- scale_axis (int, tuple, None) – When applying scaling, determines which dimensions scaling be applied along. Defaults to 0, which scales each feature independently. 
- kwargs – Keyword arguments, see - spiegelib.features.features_base.FeaturesBase.
 
 - 
get_features(audio)¶
- Extract spectral features and return results. - Parameters
- audio (AudioBuffer) – input audio 
- Returns
- Results of spectral features extraction. Format depends on output type set during construction. 
- Return type
- np.ndarray